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We present a numerical study of the structure and stability of laminar isothermal
flows formed by two counterflowing jets of an incompressible Newtonian fluid. We
demonstrate that symmetric counterflowing jets with identical mass flow rates exhibit
multiple steady states and, in certain cases, time-dependent (periodic) steady states.
Two geometric configurations were studied based on the inlet jet shapes: planar
and axisymmetric. Stagnation flows formed by planar counterflowing jets exhibit
both steady-state multiplicity and time-dependent behaviour, while axisymmetric jets
exhibit only a steady-state multiplicity. A linearized bifurcation and stability analysis
based on the continuity and Navier–Stokes equations revealed transitions between a
single (symmetric) steady state and multiple steady states or periodic steady states.
The dimensionless quantities forming the parameter space of this system are the
inlet Reynolds number (Re) and a geometric aspect ratio (α), equal to the jet inlet
characteristic length (used for calculating Re) divided by the jet separation. The
boundaries separating different flow regimes have been identified in the (Re, α)
parameter space. The resulting flow maps are useful for the design and operation of
counterflow jet reactors.

1. Introduction
Stagnation flows formed by symmetric counterflowing jets have been used in a

wide variety of applications including kinetic studies of diffusion flames (Puri et al.
1987; Zhao & Isaac 1997), polymer processing (Wood et al. 1991), nanoparticle
synthesis (Zachariah & Semerjian 1989; Sarigiannis et al. 2002), studies of blood
flow (Grimes et al. 1996), and kinetic studies in a wall-less environment (Safvi &
Mountziaris 1993; Safvi 1995; Gupta, Safvi & Mountziaris 1996). A comprehensive
discussion on counterflowing jet reactor applications can be found in Tamir (1994).
Understanding the structure and stability of such flows is critical for controlling the
operating conditions of processing equipment that lead to desirable results.

Instabilities in counterflowing jets can be generated either thermally or
hydrodynamically. The bifurcation analysis of thermal instabilities has been a subject
of intense study in the combustion community. Much of the work has centred on
tracking solution branches to find ignition and extinction points (turning points)
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of the diffusion flames and identifying how operating conditions can affect these
characteristic points in parameter space (Liñán 1974, Vlachos, Schmidt & Aris 1993;
Fotache, Kreutz & Law 1997). Non-isothermal counterflowing jets can also exhibit
instabilities without combustion, just by heating one of the jets and keeping the other
jet cool. Experiments have shown that when counterflowing jets are aligned vertically,
chaotic flows can develop if only the lower jet is heated (Pawlowski 2000).

Hydrodynamic instabilities in isothermal flows formed by counterflowing jets have
attracted less attention. Reported experimental observations suggest that even when
the mass flow rates of the two streams are equal, the resulting flows may still
exhibit multiple steady states or oscillatory behaviour (Rolon, Veynante & Martin
1991; Denshchikov, Kontratev & Romashev 1978; Denshchikov et al. 1983). Such
unexpected phenomena can have detrimental effects on research and industrial
applications employing such flows by affecting the reproducibility and interpretation
of the results. In order to successfully exploit counterflowing jets for practical
applications, it is important to identify the critical parameter values corresponding to
transitions from a single steady state to multiple ones or to oscillatory behaviour.

Rolon et al. (1991) observed multiple steady states in experiments using isothermal
counterflowing streams of air. If the inlet mass flow rates are equal, the stagnation
point is expected to be located half-way between the two inlets. Their experimental
observations however have shown the existence of two stable steady states, each
having a stagnation point on the axis of symmetry, but equally displaced from the
centre towards one or the other jet inlet. The two stable flow regimes observed
were mirror images and the phenomenon was called ‘bi-stability’. These observations
indicate the possible existence of a pitchfork bifurcation. The two observed steady
states apparently correspond to the stable steady states on the upper and lower
branches of the pitchfork, while the middle steady state cannot be realized because it
is unstable.

Denshchikov et al. (1978, 1983) studied planar (rectangular) counterflowing jets of
water under isothermal conditions and observed oscillatory behaviour under certain
flow rates and geometric configurations. The oscillatory flow was called a ‘deflecting
jet oscillation’. In the oscilliatory flow regime each jet was deflected in the opposite
direction from the other and they periodically switch directions. These observations
suggest the presence of a Hopf bifurcation.

Motivated by the above observations, we performed a bifurcation and linearized
stability analysis of laminar flows arising from isothermal counterflowing jets. The use
of stability analyses in complex flows at finite Reynolds numbers (Re) was pioneered
by L. E. Scriven (Bixler & Scriven 1987; Christodoulou & Scriven 1988; Coyle,
Macosko & Scriven 1990; Kistler & Scriven 1994). Our objectives are to: (a) reproduce
the reported experimental observations using computer simulations, (b) identify the
critical parameter values leading to multiple steady states or oscillatory behaviour,
and (c) understand the underlying physical mechanisms that lead to such behaviour.
Two flow geometries are considered in our study of counterflowing jets: (i) planar
rectangular jets and (ii) axisymmetric cylindrical jets. Two- and three-dimensional
computer simulations were performed based on the fundamental continuity and
Navier–Stokes equations. Bifurcation tracking and eigenvalue analysis algorithms
were employed to identify the characteristic values of Re and the geometric aspect
ratio, α, that correspond to transitions between various flow regimes. Flow regime
maps are presented in parameter space based on this analysis. Using such parameter
maps counterflow jet reactors can be designed and operated to control the different
flow modes.
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Figure 1. (a) Planar counterflow jet geometry used in two-dimensional simulations.
(b) Alternative planar counterflow jet geometry that includes a flow expansion region. Cartesian
coordinates are used in both cases.

The remainder of this paper is organized as follows: Section 2 describes the
computational models used in our analysis. Section 3 describes the numerical
algorithms used to solve the steady-state and transient problems. Finally, the results
and conclusions are discussed in § 4 and § 5, respectively.

2. The counterflowing jet model
While analytic solutions for counterflowing jets exist (Leclerc 1950; Bird, Stewart &

Lightfoot 1960), it has been shown that such models only capture the flow qualitatively
and cannot accurately predict the measured fluid velocities. For a small spacing
between the jets, the flow field deviates from these analytic solutions (Rolon et al.
1991) and rigorous models, such as those developed by our group (Safvi & Mountziaris
1994), are necessary for accurate prediction of the flow field. The simulation results
presented here are based on the fundamental equations describing incompressible
fluid flow of a Newtonian fluid in two different geometries.

2.1. Model geometry

The geometries used in the analysis are shown in figures 1 and 2. Figure 1(a) shows
a two-dimensional representation of a planar counterflowing jet arrangement with an
exit region formed by two parallel horizontal walls aligned with the jet inlets, and the
Cartesian coordinate system used in this study. In this case, the characteristic length
(used for computing Re) is the width of the inlet, D, the separation between the jets
is denoted by W , and the horizontal distance of the exit from the y-axis is L. In the
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Figure 2. Schematic of the geometry used in flow simulations of three-dimensional
axisymmetric jets. Cylindrical coordinates are used with a two-dimensional mesh and axial
symmetry is assumed. The shaded region corresponds to the discretized (r, z) domain.

simulations the distance L was fixed at ten times the spacing between the jets, W . This
was found to be sufficient to eliminate the effects of the exit boundary conditions on the
structure of the flow in the stagnation region between the two jets. A variation of this
geometry that includes a flow expansion region is shown in figure 1(b). This geometry
was used in some calculations to test the effect of the walls on the structure of the flow
in the stagnation region. In this case the separation of the jet inlets is still W , but the
exit region was formed by two horizontal walls positioned at a distance cW from each
other, symmetrically on each side of the horizontal midplane, as shown in figure 1(b).
In our results, c was fixed at a value of 2.0. In both cases, the entire domain indicated
by the shaded region is discretized. The two geometries were used to compare
our simulations with the work of Denshchikov et al. (1978, 1983). An important
assumption for the planar jet models is that the flow is always two-dimensional.
This means that the third dimension is long enough compared to the other two to
allow a two-dimensional flow to develop and that the flow does not become three-
dimensional, even when the two-dimensional stagnation flow pattern is disturbed and
becomes asymmetric.

To study the structure and stability of stagnation flows formed by axisymmetric
counterflowing jets, two models were used. The first was based on a three-dimensional
axisymetric representation of the flow taken from Gupta et al. (1996) and employed
cylindrical coordinates (figure 2) on a two-dimensional mesh. The second was a fully
three-dimensional model based on Cartesian coordinates that enable the simulation
of flows exhibiting a breaking of the axial symmetry (figure 3). A limitation of
the simulation code did not allow analysis of three-dimensional disturbances on the
two-dimensional axisymmetric mesh. Therefore, the full three-dimensional mesh was
required to analyse the complete system.

2.2. Governing equations

The governing equations are based on the continuity and Navier-Stokes equations
describing laminar isothermal flow of an incompressible Newtonian fluid. The
governing partial differential equations (PDEs) are described below in dimensionless
form:

total mass conservation

∇ · u = 0; (2.1)

momentum conservation

∂u
∂t

+ u · ∇u + ∇P − 1

Re
∇2u = 0. (2.2)
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Figure 3. Three-dimensional mesh based on a Cartesian coordinate system used to simulate
counterflowing jets that may exhibit breaking of symmetry. In the centre, the finite element
mesh is unstructured and not axisymmetric.

The unknowns in dimensionless form are u, the fluid velocity vector, and P , the dyna-
mic pressure which includes the body force term. Re is the Reynolds number and t is
the dimensionless time. We solve a number of momentum equations (equation (2.2)),
equal to the number of spatial dimensions.

Equations (2.1) and (2.2) were made dimensionless using a number of characteristic
values. Distance was scaled by a characteristic length, D, the inlet jet width or
diameter defined in § 2.1. Velocity was scaled by uo, the inlet velocity of each inlet
jet, time was scaled by D/uo, and pressure was scaled by ρu2

o. The Reynolds number
(Re) in equation (2.2) is defined as

Re =
ρDuo

η
, (2.3)

where ρ is the fluid density and η is the viscosity of the fluid.
Additional dimensionless parameters may appear when the boundary conditions

that are necessary to complete the model are written in dimensionless form. For
the simulations discussed the following boundary conditions were used: (i) uniform
velocity with absolute value of uo for the two jet inlets (plug flow), (ii) no slip and
no penetration along solid walls (u = 0), and (iii) no normal stress and no vertical
velocity at the exit. Given that L has a fixed value equal to 10W and that the
expansion region of the geometry appearing in Figure 1(b) is fixed at 2W , the only
additional dimensionless parameter that appears in the boundary conditions is the
aspect ratio, α, defined as:

α = D/W. (2.4)

The simulations discussed in this study correspond to a range of Re from 1 to 1500
for planar jets, 1 to 2100 for axisymmetric jets and aspect ratios between 0.05 and 1.0.
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It is important to note that both the planar and axisymmetric models exhibit a
reflectional symmetry about the midplane. However, we do not force the solutions
to have this symmetry since we expect the symmetry to be broken, as observed by
Rolon et al. (1991).

3. Numerical methods
The numerical methods that are essential for this analysis must allow computation

of steady and transient solutions, continuation of a steady-state solution branch as
the value of a parameter is changing, computation of the bifurcation points, stability
analysis by tracking the leading eigenvalues, and continuation of bifurcation points
in parameter space. The code MPSalsa, developed by Sandia National Laboratories
(Shadid et al. 1996; Salinger et al. 1996), is used to discretize and solve the partial
differential equations for the steady-state and transient counterflow jet models.
MPSalsa is designed to solve laminar, low-Mach-number, two- and three-dimensional
incompressible reacting fluid flows on massively parallel computers. The continuation
and bifurcation tracking capabilities are provided by the Library of Continuation
Algorithms (LOCA), also developed at Sandia (Salinger et al. 2002a , 2005). Linear
systems were solved using the Aztec parallel iterative solver library (Hutchinson,
Shadid & Tuminaro 1995). The numerical methods and solution algorithms used for
the bifurcation and stability analysis are briefly discussed in the following sections.

3.1. Discretization of PDEs

A stabilized-Galerkin finite element formulation is used to spatially discretize equa-
tions (2.1) and (2.2). The stabilized method allows equal-order interpolation of velocity
and pressure unknowns and also provides stabilization of the convection operators
to limit oscillations due to high grid Reynolds number effects. This formulation
is based on the work of Hughes, Franca & Balestra (1986) and Tezduyar (1992).
Specifically, the discrete equations are obtained from the following residual equations:

momentum

Fui
=

∫
Ω

Rmi
Φ dΩ +

∑
e

∫
Ωe

τm(u · ∇Φ)Rmi
dΩ; (3.1)

total mass

FP =

∫
Ω

RP Φ dΩ +
∑

e

∫
Ωe

ρτm∇Φ · Rm dΩ. (3.2)

The Φ are the trial functions corresponding to the Galerkin finite element method and
i is the index of the spatial dimension. Rmi

and RP are the residuals corresponding
to equations (2.2) and (2.1) respectively:

Rm =
∂u
∂t

+ u · ∇u + ∇P − 1

Re
∇2u, (3.3)

RP = ∇ · u. (3.4)

The final term on the right-hand side of equations (3.1) and (3.2) is the stabilization
term. In equation (3.1) this term stabilizes convection and corresponds to SUPG
(Streamline Upwind Petrov-Galerkin). The final term in (3.2) stabilizes the velocity–
pressure coupling for incompressible flows, allowing equal-order interpolation for
the velocity and pressure unknowns. In both stabilization terms τm is the stability
parameter that is a function of the fluid velocity, u, and the dimensionless transport
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coefficients appearing in the model. The details of the technique can be found in
Hughes et al. (1986) and Tezduyar (1992).

The effects of SUPG stabilization on bifurcation-point calculations have been
investigated and are reported in detail in Burroughs et al. (2001) and Salinger
et al. (2002b). This includes comparisons of the bifurcation points using alternative
discretization techniques (e.g. spectral methods) and comparisons with the SUPG
stabilization disabled. We find that SUPG effects in our simulations are negligible.
For example, at an aspect ratio of 0.125, the value of the Reynolds number of the
pitchfork bifurcation point changed by 0.2 % when SUPG stabilization was disabled.

The mesh discretizations employed bilinear quadrilateral and trilinear hexahedral
elements. The mesh density was adjusted to be higher near the jet inlets and in the
stagnation region, and lower near the exits. A mesh refinement study is shown in the
Appendix to demonstrate solution accuracy. For the planar rectangular jet geometry
shown in figure 1(a), the finite element discretization utilized 6720 bilinear elements
corresponding to 20 769 unknowns. The alternative model shown in figure 1(b)
employed 16 640 bilinear elements corresponding to 50 913 unknowns. In the case of
axisymmetric jets, the two-dimensional axisymmetric model corresponding to figure 2
was discretized using 3600 bilinear elements yielding 11 311 unknowns. The three-
dimensional axisymmetric inlet model was solved using the mesh shown in figure 3
that contained 414 000 linear elements corresponding to 1 696 668 unknowns.

The discretzation of the governing equations yields a set of differential algebraic
equations (DAEs) of the form

F(x, ẋ, t, µ) =




FP (x, µ)
Fu1

(x, ẋ, t, µ)
...

Fui
(x, ẋ, t, µ)


 = 0. (3.5)

F is defined as the set of residual equations resulting from the discretization of the
PDEs, x is the dimensionless solution vector for all unknowns in the problem, t is
the dimensionless time, ẋ is the dimensionless derivative of the solution vector with
respect to time (∂x/∂t), µ is a parameter of interest in the bifurcation analysis, and i

is the number of spatial dimensions in the model.

3.2. Steady-state solver – Newton’s method

To obtain stationary points of the residual equations, we define a steady-state
residual form of equation (3.5), F(x, µ) = 0, by removing the time-dependent term in
equation (2.2). In all subsequent continuation and bifurcation tracking routines, the
steady-state residual equations are used. The time-dependent residual equations are
used only when performing the stability analysis described in § 3.4 and for verifying
that the Hopf bifurcation generated a periodic solution.

We solve the system of nonlinear residual equations using a fully coupled Newton–
Krylov iterative solution method (described in Shadid, Tuminaro & Walker 1997;
Shadid 1999). Applying Newton’s method to equations (3.5) results in the following
linear system that is solved at each iteration of the nonlinear sequence:

J�x = −F. (3.6)

Here, J is the Jacobian matrix defined as Jij = ∂Fi/∂xj , and �x is the update
to the latest estimate of the solution vector. To form the Jacobian of the system,
equations (3.1) and (3.2) are linearized. In MPSalsa, the Jacobian is formed
analytically and in parallel, and is stored in a distributed sparse format. The
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resulting Newton equation is a fully coupled non-symmetric linear system, and is
solved iteratively with domain-decompositon ILU preconditioned GMRES (Saad &
Schultz 1986; Saad 1996). Successful termination of the nonlinear iterative process
is based on a weighted root-mean-square norm (Brenan, Campbell & Petzold 1996;
Byrne & Hindmarsh 1999):

C

√√√√ 1

N

N∑
i=1

( (
xk

i − xk−1
i

)
RTOL|xk−1

i | + ATOLi

)2

< ε, (3.7)

where C is a constant, k is the current nonlinear iteration number, N is the number
of unknowns in the system, RTOL is the relative tolerance, ATOL is the absolute
tolerance (which can be a vector or constant value), and ε is the desired tolerance
requested by the user. Additional details and parameter values can be found in the
Appendix.

3.3. Steady-state solution tracking: parameter continuation

Once a steady-state solution has been obtained, the solution branch can be tracked as
a function of a continuation parameter, µ. In this study the continuation parameters
were the Reynolds number and aspect ratio. The Reynolds number is a scalar value
that can be set during the continuation runs. The aspect ratio was set by algebraically
adjusting the coordinate values of the original mesh that was created with an aspect
ratio of 1.0.

The LOCA library (Salinger et al. 2002a , 2005) implements a variety of predictor–
corrector algorithms for parameter continuation. In this study we use zero-order,
Euler–Newton, and arc-length continuation algorithms. A full description of the
algorithms can be found in Keller (1977). Zero-order continuation uses the solution
from the previous continuation step as the initial guess for the next continuation step.
The Euler–Newton algorithm computes the tangent at the previous continuation
step, and extrapolates in that direction by the step length, to compute the initial
guess for the next continuation step. In arc-length continuation, a monotonic arc-
length variable s replaces the system parameter, µ, in the continuation stepper. The
parameter µ is treated as an unknown and is calculated along with the solution vector.
For arc-length continuation, an additional constraint equation G, which ensures that
the next solution is a distance �s from the previous solution, is solved simultaneously
with the steady-state equations. The augmented set of nonlinear equations is

F(x, µ) = 0, (3.8a)

G(x, µ, s) = 0. (3.8b)

The new system of equations is solved by using Newton’s method again. In this
case there are m +1 unknowns where m is the number of unknowns in the original
steady-state problem and µ is the additional unknown.

3.4. Stability analysis: eigenvalue and eigenvector calculations

A linear stability analysis is used to identify bifurcation points along solution
branches. This is accomplished through approximation of the leading eigenvalues
of the linearized system using Arnoldi iteration (Arnoldi 1951), a technique first
demonstrated by Christodoulou & Scriven (1988). We used the P ARPACK software
(Maschhoff & Sorensen 1996; Lehoucq, Sorensen & Yang 1998) in our simulations.
Implementation details and a discussion of the spectral transformations can be
found in Lehoucq & Salinger (2001, 1998), Salinger, Lehoucq & Romero (2001) and
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Burroughs et al. (2004). A brief summary of the method follows. We note that for the
two-dimensional meshes (planar and axisymmetric) the base flow is always perturbed
within the computational domain. Perturbations in the third dimension were not
analysed using the two-dimensional mesh domains. To identify three-dimensional
disturbances we used the three-dimensional mesh.

A linearization of the time-dependent equations (equation (3.5)) about a steady-state
solution leads to the following generalized eigenvalue problem:

Jw = Bwλ, (3.9)

where J is the Jacobian matrix associated with the steady state, λ is the eigenvalue,
and w is the eigenvector. B, called the mass matrix, is the coefficient matrix of time-
dependent terms, B = −∂ F/∂ ẋ, evalutated at the steady state. Note that B is singular
since the incompressible flow equations have no time derivatives for the pressure
variable. Both λ and w can be complex.

The steady state is linearly stable if the real part of all eigenvalues is less than zero
(Re(λ) < 0) for all eigenvalues of equation (3.9). Therefore, the rightmost eigenvalues
(eigenvalues closest to the positive real half of the real-imaginary plane) of equa-
tion (3.9) are critical in determining the stability of a steady state.

To compute the rightmost eigenvalues, a generalized Cayley spectral transform
(Meerbergen, Spence & Roose 1994; Lehoucq & Meergbergen 1998) is used to re-form
the generalized eigenvalue problem into an ordinary eigenvalue problem (Lehoucq &
Salinger 2001):

T sw = (J − σcB)−1(J − µcB)w = νw, ν =
λ − µc

λ − σc

. (3.10)

Here σc is the pole and µc is the zero of the Cayley transform, and ν is the transformed
eigenvalue. Selection of the Cayley parameters, σc and µc, is critical to map the correct
set of eigenvalues (those with the largest real part) to the eigenvalues of the largest
magnitude in the Cayley transform. The importance of this transform, when choosing
λ < σc < µc for all λ as in Lehoucq & Salinger (2001), is that it maps the infinite
negative eigenvalues generated by the continuity equation (resulting in a singular B
from the incompressibility assumption) to a value of one. This makes the spectral
condition number of the system smaller than other typical transformations such as
the shift–invert spectral transformation. The resulting ordinary eigenvalue problem
is solved using an implicitly restarted Arnoldi’s method (Arnoldi 1951; Ruhe 1996;
Meerbergen & Roose 1997) in P ARPACK, each step of which requires an iterative
linear solver to apply the inverse operator in equation (3.10).

3.5. Parameter tracking of bifurcation points

Once a bifurcation point is located and the eigenvalue and corresponding eigenvector
near the bifurcation point have been calculated, the LOCA library can converge to the
bifurcation point and track it as a function of a second parameter. Routines have been
implemented in LOCA to track turning point, pitchfork, and Hopf bifurcations. The
tracking algorithms continue in the parameter µ1 (called the continuation parameter),
and calculate the value of a second parameter, µ2 (called the bifurcation parameter)
such that the steady-state solution corresponds to the bifurcation point. In this
way, two-parameter plots which map the transition between solution types can be
generated.

To track a pitchfork bifurcation, the following system of equations is solved:

F(x, µ1, µ2) + εψ = 0, (3.11a)
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ψ · x = 0, (3.11b)

Jn = 0, (3.11c)

φ · n − 1 = 0. (3.11d)

In this system ε is a slack parameter representing the asymmetry in the system. If the
numerical system is truly symmetric, then the algorithm will drive ε to zero, recovering
the problem of interest. All meshes used in this study were symmetric. Equation (3.11b)
requires the solution vector to be orthogonal to the antisymmetric vector ψ (forces
the solution vector to be on the symmetric branch). There is a zero eigenvalue at
a pitchfork bifurcation, so equations (3.11c) and (3.11d) are added. Equation (3.11c)
makes the Jacobian singular if the null vector, n, is non-zero. Equation (3.11d) forces
n to be non-zero (normalizes the length of the null vector); φ is a scaling vector that
can be anything as long as φ · n �= 0 at convergence, and usually we pick φ = ψ . This
system of equations expands the number of unknowns from m to 2m+2. More details
can be found in Salinger et al. (2005) on how these equations are solved without
major code modifications.

To track a Hopf bifurcation, the following system of equations is solved:

F(x, µ1, µ2) = 0, (3.12a)

J y + ωBz = 0, (3.12b)

Jz − ωB y = 0, (3.12c)

φ · y − 1 = 0, (3.12d)

φ · z = 0. (3.12e)

Here y and z are the eigenvectors for the real and imaginary parts of the Hopf
bifurcation (w = y+iz) and ω is the frequency of the Hopf bifurcation (the imaginary
part of the eigenvaule of the Hopf bifurcation, or λ = 0+iω). φ is an arbitrary scaling
vector used to fix the amplitude and frequency of the eigenvectors. This system of
equations expands the number of unknowns from m to 3m + 2.

The flow code, solver, and stability calculations have been verified on a number
of two-dimensional and three-dimensional flow problems (Burroughs et al. 2001;
Salinger et al. 2002b).

4. Results and discussion
The results are divided into two sections based on the geometry of the jets. The

two-dimensional flows resulting from the planar (rectangular) inlet jet geometries
shown in figure 1 are discussed in § 4.1. The results of the simulations are compared
to experimental data reported by Denshchikov et al. (1978, 1983). The analysis of
stagnation flows formed by axisymmetric inlet jets is presented in § 4.2.

4.1. Planar jets

The work of Denshchikov et al. (1978, 1983) on flows resulting from planar
counterflowing jets was carried out in a water-filled tank using two coplanar slit-
shaped nozzles as inlets. The geometry used made the flow two-dimensional. We
performed a parametric study on the structure and stability of the resulting flows
using the two-dimensional model discussed in § 2. Four different flow regimes were
identified depending on the values of Re and α.

The first flow regime corresponds to a single symmetric steady state. An example
of this type of flow is depicted in figure 4 for a Reynolds number of 22.5 and aspect
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(b)

(a)

Figure 4. Streamlines for planar jets with Re = 22.5 and α =0.125. (a) Entire domain.
(b) Close-up of the stagnation region. Colour code: red corresponds to largest velocity
magnitude and blue to lowest.

ratio of 0.125. Figure 4(a) shows the entire computational domain while figure 4(b)
shows a close-up of the stagnation region. The flow forms a well-defined stagnation
pattern with four convectively driven flow recirculations on the sides of the inlet jets.
Subsequent eigenvalue analysis indicated that the solution is stable. At low Re, this
type of flow mode arises irrespective of the value of α.

At higher values of Re, transitions to two additional flow modes can occur. The
corresponding bifurcation points of the transition were identified using eigenvalue
analysis and parameter continuation techniques. For a fixed aspect ratio, a continua-
tion from low to high Re values was performed. At each continuation step, the steady-
state solution was obtained by using Newton’s method. The leading eigenvalues were
subsequently computed at the steady-state solution. At low Re the leading eigenvalue
is real and has a negative real part corresponding to a stable steady state. Bifurcation
points were identified when the real part of the leading eigenvalue crossed the
imaginary axis. At mid to high aspect ratios this transition occurs through a pitchfork
bifurcation with a single real eigenvalue crossing zero. At low aspect ratios on the
other hand, the transition to a different flow mode occurs via a Hopf bifurcation
arising when a pair of complex eigenvalues crosses the imaginary axis.

The second flow regime exists at large aspect ratios, for which the transition to a
different flow mode occurs via a pitchfork bifurcation. This bifurcation is a breaking
of symmetry about the midplane as noted in § 2.2. For a given aspect ratio, a critical
Re can be identified above which there are three steady states instead of one; two
stable and one unstable. To illustrate the transition to a flow regime with three
possible steady states we fixed the aspect ratio at 0.125 and increased the value
of Re from 22.5 (figure 4) to 27.5. In this case a pitchfork bifurcation point was
identified at a critical Re =24.5. Above this value, three steady states are present.
The fluid streamlines for the three steady states at Re= 27.5 are shown in figure 5.
The two leading eigenvalues are also listed for each case. Examination of the leading
eigenvalue indicates that the flow patterns shown in figures 5(a) and 5(c) correspond
to stable solutions. These solutions are mirror images of each other with respect
to the midplane of the domain. The symmetric solution shown in figure 5(b) is
unstable.

In the two asymmetric stable steady states, the stagnation point is located above
or below the midplane, and there is also a pronounced reduction in the size of
the recirculation areas towards the direction of the shift of the stagnation point. A
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(a) Stable (λ1 = –0.005718, λ2 = –0.062409)

(b) Unstable (λ1 = +0.029071, λ2 = –0.050949 ± 0.591274i)

(c) Stable (λ1 = –0.005718, λ2 = –0.062409)

Figure 5. Streamlines for planar counterflowing jets with α = 0.125 and Re =27.5. Three
steady states are possible: (a) stable asymmetric (upper branch), (b) unstable symmetric (middle
branch) and (c) stable asymmetric (lower branch). The two rightmost (leading) eigenvalues are
also shown for each steady state.

bifurcation diagram was computed to track the dependence of the location of the
stagnation point on Re for a fixed α = 0.125. The extent of the deflection of the
stagnation point is used as a measure of the asymmetry of the solution. The diagram
is shown in figure 6. A pitchfork bifurcation at Re = 24.5 marks the transition from
a single steady state to three steady states for higher Re values. The two inlets
correspond to values of 0.5 and −0.5 on the dimensionless deflection axis. The
deflection of the stagnation point increases as the value of Re increases and can reach
50 % of the distance between the midpoint and the inlet.

At higher values of α the critical Re corresponding to the pitchfork bifurcation also
increases. For example, the critical Re at α = 1.0 is 872 while at α =0.125 the critical
number is 24.5. At high aspect ratios, the jets are in close contact, requiring larger
Reynolds numbers to generate the convective instability of the pitchfork bifurcation.
High aspect ratios appears to stabilize the flow and also affects the asymmetric
structure of the flow field. While deflections of the stagnation point can reach 50 %
at smaller aspect ratios, the deflection of the stagnation point at α = 1.0 is very small.
Correspondingly, the size of the flow recirculation areas near the inlets is suppressed,
as shown in figure 7.

The third flow regime, that arises for small aspect ratios, is characterized by
oscillatory behaviour. The transition to oscillatory flow was found to occur via a Hopf
bifurcation. This happens when the leading eigenvalue consists of a pair of complex
conjugates whose initially negative real parts become zero before crossing the
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Figure 6. Bifurcation diagram for α = 0.125. The position of the stagnation point along the
y-axis is plotted vs. Re. The upper and lower jet inlets are located at 0.5 and −0.5, respectively.
The point marked PB is the pitchfork bifurcation point. Solid lines correspond to stable steady
states and the dashed line to unstable ones.

Figure 7. Streamlines corresponding to a stable solution (upper) branch for Re = 1451 and
α = 1.0. The deflection of the stagnation point is less than 1.0 % for this asymmetric solution.

imaginary axis as the value of a parameter is changed. Continuation with respect to Re
was also used in this case to identify Hopf bifurcation points. For values of Re higher
than the ones corresponding to the Hopf bifurcation point the symmetric steady
state becomes unstable and a stable time-dependent (periodic) flow pattern appears.
To study the periodic flow arising for Re higher than the critical one, a transient
simulation was performed. Figure 8 shows snapshots of streamlines computed for
Re =15 and α = 0.1 corresponding to roughly one period of the oscillatory flow
pattern. In this case the jets deflect off each other and periodically swing left and
right as time passes. This flow pattern agrees well with the reported ‘deflecting jet
oscillation’ of Denshchikov et al. (1978, 1983).

To demonstrate the periodic character of the transient flow mode, the x-velocity
component at a specific point in the domain is plotted as a function of dimensionless
time in figure 9. In this case a period of approximately 12 dimensionless time units
is observed in the transient simulations. Eigenvalue calculations about the unstable
steady state predict a period of 11.98 dimensionless time units.

Once the bifurcation points were located, tracking algorithms (equations (3.11) and
(3.12)) in conjunction with parameter continuation were used to directly calculate
entire branches of bifurcation points. One parameter was used as the continuation
parameter, and the second parameter was directly calculated such that the steady-state
solution corresponds to the bifurcation point. A two-parameter plot of the Reynolds
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t = 12.0

Figure 8. Streamline snapshots demonstrating oscillatory behaviour (deflecting jet oscillation)
in a planar counterflowing jet obtained by a transient simulation in dimensionless time at
Re = 15 and α = 0.1. The dimensionless period of the oscillation is approximately 12.

number as a function of aspect ratio was generated based on the tracking algorithm
data and is shown in figure 10. The curves denote the bifurcation points computed
on the stable flow branches. The branches separate the behaviour of counterflowing
jets into three different flow modes or regions: (I) the single stable steady state,
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Figure 9. Plot of the dimensionless x-component of velocity at x =0.1 and y = 0.25 for the
conditions corresponding to figure 8.
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Figure 10. Map of the parameter space indicating different flow regimes arising in planar
counterflowing jets. The red arrow indicates the continuation path used to construct the
bifurcation diagram shown in figure 11.

(II) multiple steady states, and (III) time-dependent periodic flow with deflecting
jet oscillations. An interesting point is the intersection of the pitchfork and Hopf
bifurcation curves at a Reynolds number of 11.2 and an aspect ratio of 0.075. A
real eigenvalue and a complex-conjugate pair of eigenvalues all cross the imaginary
axis at the same time. To the left of this point, the Hopf bifurcation occurs on a
stable symmetric branch, but to the right of this point the Hopf bifurcation occurs
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Figure 11. Bifurcation diagram for α = 0.125 following the path of increasing Re indicated
by the red arrow in figure 10. PB, pitchfork bifurcation; HB, Hopf bifurcation.

on all three branches. In figure 10 only the Hopf bifurcations occurring on the stable
asymmetric branches are shown.

An important feature of the Hopf bifurcation branch in figure 10 is its shape. As
the aspect ratio increases, this branch turns back towards smaller aspect ratios. As
a result, there is a maximum aspect ratio after which the deflecting jet oscillation
cannot occur no matter what the value of Re is. This feature can generate a complex
behaviour. We demonstrate this by performing a continuation in the Reynolds number
at a fixed aspect ratio of 0.125. The arrow in figure 10 shows the path taken through
parameter space to compute the bifurcation diagram in figure 11. Starting at Re = 1.0
the flow mode corresponds to a single stable steady state. If we increase the value
of Re we encounter a pitchfork bifurcation and a transition to one of two stable
asymmetric flow patterns (with the symmetric flow corresponding to the original
branch that becomes unstable). Further increase in Re leads to a Hopf bifurcation
and the stable asymmetric steady state becomes oscillatory. At even higher values
of Re the oscillatory behaviour disappears and the flow pattern reverts back to one
of two stable asymmetric steady states. The coexisting oscillatory solutions are not
computed and are not plotted in figure 11. Only the unstable steady state is plotted
for the Hopf bifurcation.

Knowledge of the complex flow phenomena arising along the path traced in
figure 11 by changing a single parameter (Re) is critical for applications utilizing
counterflowing jets. The observed behaviour of an experimental system following
such a path can be very confusing, unless a fundamental understanding of the
possible stable flow patterns, as presented above, is available. In an experimental
setup corresponding to figure 11 (α = 0.125) and utilizing various flow rates (different
values of Re), the flow pattern can be stable and symmetric at low Re, stable and
asymmetric for Re beyond the PB point, oscillatory beyond the HB point, and stable
and asymmetric again at higher values of Re. In experimental investigations the root
cause of such a plethora of complex flow patterns could be erroneously sought in
equipment design and instrument calibration issues and not in the underlying physics.



Stability of counterflowing jets 133

0.1 0.2 0.3 0.4
Aspect ratio

0

100

200

300

400

Re

Simulation (2D rectangular jet model)
Experiment (Denschikov et al. 1983)

Experiment

Simulation

Figure 12. Map of the parameter space comparing the predictions of the simulations with
the experiments of Denshchikov et al. (1978, 1983) on the onset of deflecting jet oscillations in
planar counterflowing jets.

Figure 13. Streamline plot for the alternative planar counterflow jet geometry of
figure 1(b) for Re = 50 and α = 0.1.

A comparison between the predictions of our simulations and the experimental
results reported by Denshchikov et al. (1978, 1983) is shown in figure 12. The
experimental data and the simulation results show strikingly similar trends in terms
of the shape and location of the oscillatory flow region in parameter space. The
agreement in this case is only qualitative. The reasons can be sought for differences
between the simulations and the experiments in the geometry of the domain as well
as in operating and boundary conditions. The experimental set-up did not include
horizontal retaining walls for the exit flow, but employed an open geometry with the
jets expanding into an ‘infinite’ fluid after colliding with each other. Furthermore, no
error bars or resolution limits were reported in the experimental study that places the
onset of oscillatory flow at Re = 90 and persisting at aspect ratios as high as 0.24. For
comparison, the model predicts the onset of oscillatory flow at Re = 4 and persisting
at aspect ratios as high as 0.13.

Simulations were also performed using the alternative planar jet arrangement
shown in figure 1(b) in an effort to resolve the above discrepancies between theory
and experiments. Figure 13 shows the predicted streamlines from a typical simulation
utilizing the new geometry. The simulations based on the alternative geometry resulted
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Figure 14. A more complete map of the parameter space indicating the regions correspond-
ing to the four different flow regimes that may arise in laminar planar counterflowing jets.

in essentially the same Hopf bifurcation curve as the one shown in figure 12. We
conclude that the discrepancies were not the result of the exit wall confinement
although conditions inside the experimental tank could not be ruled out in general.

Finally, a fourth flow regime that corresponds to oscillatory flow with vortex
shedding was observed at high values of Re, irrespective of the aspect ratio. The
transition to this flow mode is caused by Hopf bifurcations leading to periodic flows.
The leading eigenmodes typically correspond to downstream recirculations away from
the stagnation flow region. There is no single mode that causes this type of instability
and multiple bifurcating modes were located at different aspect ratios. Continuation
runs in Re revealed multiple Hopf bifurcations crossing the imaginary axis in rapid
succession at high Re, suggesting a transition to chaotic flows. Figure 14 shows a
rough outline of this region based on three data points. This curve is not the result of
tracking a single mode but was generated using independent eigenvalue calculations.
This was done because the eigenmode that destabilized the flows changed with aspect
ratio. More details on the vortex shedding region can be found in Pawlowski (2000).

4.2. Axisymmetric jets

The flow patterns obtained from simulations of axisymmetric jets, using the three-
dimensional axisymmetric (and hence two-dimensional) domain (figure 2) and the
fully three-dimensional domain (figure 3), are discussed in this section. The analysis
focused on identifying values of the parameters for which transitions occur to flow
patterns that are different from the expected single and symmetric stable steady state.
The bifurcation analysis on the three-dimensional axisymmetric model was performed
following the same procedures used for the analysis of planar counterflowing jets.
For Re between 1 and 2100 and aspect ratios between 0.05 and 1.5, no Hopf bifurca-
tion points were found, thus eliminating the possibility of oscillatory flow patterns
(deflecting jet oscillations and vortex shedding) like the ones predicted for planar
jets. The only type of flow transition found for axisymmetric jets corresponded to a
pitchfork bifurcation that leads to three steady states, analogous to those discussed in
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Figure 15. Parameter plot for axisymmetric counterflowing jet inlets. Lines represent
pitchfork bifurcation points located on stable solution branches.

the previous section. Again, continuation of the pitchfork bifurcation delineates the
two different flow regimes in parameter space. The result is shown by the solid line in
figure 15. At low Re, the flow is dominated by viscous effects and a single symmetric
steady state is obtained. The transition to three steady states occurs for Re higher
than about 60 for aspect ratios up to 0.5. For higher aspect ratios (i.e. for small jet
separations) the critical value of Re required to force the transition increases almost
linearly with α, following the formula Recr =60(α + 0.5).

The stability of these axisymmetric solutions to three-dimensional disturbances
was investigated. Since we do not have the capability of studying three-dimensional
disturbances to three-dimensional axisymmetric flows, a full three-dimensional model
(figure 3) was constructed to investigate the annular disturbances. In particular, we
conjectured that a three-dimensional analogue to the deflecting jet oscillations (e.g.
swirling jets) in planar jets would exist. No three-dimensional modes overtook the
axisymmetric mode in the range of parameter values studied here. As shown by
the dashed line in figure 15 only the pitchfork bifurcation was detected. There is
a small difference in the predictions of the three-dimensional axisymmetric and full
three-dimensional models at low aspect ratios (large jet separations) attributed to
numerical artifacts that are related to the distortion of the three-dimensional mesh.
The mesh was created for α = 1.0 and was algebraically deformed to fit the other
aspect ratios. At aspect ratios higher than 0.5 the predictions between the two models
are almost identical. A single calculation with 10 million unknowns was performed
(on 160 processors) at α =1.0 to verify that the mesh resolution was adequate. With
this level of resolution, the prediction of the bifurcation point for the two models
agreed to three digits.

The suppression of oscillatory flow behaviour in the three-dimensional axisymmetric
jet flows, compared to the two-dimensional planar flows, must be related to the
divergence and corresponding deceleration of the flow as it travels radially. No
breaking of the rotational symmetry, necessary for realization of oscillatory flows,
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was observed for the conditions studied here. Furthermore, the deflection of the
stagnation point from the origin along the z-axis is less pronounced in axisymmetric
opposed jets when compared to planar jets. The maximum deflection occurs at the
smallest aspect ratio that we studied (α = 0.05) and was computed to be about 13.5 %
of the distance between the centre of the reactor and the jet inlet for Re = 78.

The asymmetric flow patterns observed by Rolon et al. (1991) can be attributed to
the flow mode obtained for values of Re higher than the critical ones corresponding
to the pitchfork bifurcation. The jets used in their experiments were more complicated
than the ones used in this study, but the observed behaviour is identical to the flows
demonstrated with our analysis.

5. Conclusions
A fundamental study of the structure and stability of laminar flow patterns in planar

and axisymmetric counterflowing jets of an isothermal incompressible Newtonian
fluid was performed. The different flow regimes that may arise were identified and
mapped on a two-dimensional parameter space formed by the Reynolds number (Re)
and a geometric aspect ratio α (jet characteristic dimension/jet separation). These
calculations were enabled by linear stability and bifurcation tracking algorithms for
large-scale applications.

Stagnation flows formed by identical counterflowing planar jets exhibited complex
behaviour classified into four distinct flow modes corresponding to: (a) a symmetric
single steady state, (b) three steady states (two stable asymmetric ones and an unstable
symmetric one), (c) a ‘deflecting jet’ oscillatory flow, (d) time-dependent chaotic flow
with vortex shedding.

Stagnation flows formed by identical axisymmetric jets exhibited a transition from
a single symmetric steady state to three steady states (two stable asymmetric ones and
an unstable symmetric one). The three steady states are obtained under the following
conditions: (i) Re > 60 for α less than or equal to 0.5 or (ii) Re > 60(α + 0.5) for
α greater than 0.5 (and up to 1.0). No oscillatory instabilities were found in this
geometry.

The ability to predict the various flow modes arising from counterflowing jets is
crucial for the effective use of these flows in practical applications. The most important
finding of our study is the existence of stable asymmetric and/or time-dependent flow
patterns when the macroscopic operating conditions (geometry and inlet flow rates)
are symmetric.
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Komplex Library for Hopf Bifurcation tracking. We would also like to thank Rich
Lehoucq for many helpful discussions about eigenvalue calculations. Funding for this
project was provided by the National Science Foundation (CTS) and the Advanced
Strategic Computing Initiative (ASCI). We also thank two anonymous reviewers for
their constructive criticism of the manuscript. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94AL85000.

Appendix. Numerical solution details
The solution of the linear system J�x = −F was achieved using a domain decom-

position ILUT preconditioned GMRES algorithm implemented in the Aztec software
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Levels of refinement Nodes Unknowns Repf % Error

0 6321 18 963 24.39 2.6
1 24 905 74 715 24.80 0.96
2 98 865 296 595 24.98 0.23
3 393 953 1 181 859 25.04 –

Table 1. Mesh dependence study for α = 0.125 using three levels of mesh refinement. The
computed values of Repf correspond to the Reynolds number of the pitchfork bifurcation
point. The % Error is the error in the Repf compared to the value from the mesh with the
highest level of refinement.

(Hutchinson et al. 1995). The iteration sequence was terminated when the following
criterion was met:

||F(xk) + J(xk)�x|| � ηk||F(xk)||, (A 1)

where ηk is a user-specified tolerance for Newton iteration k. In our simulations,
ηk was set to a constant value of 1.0 × 10−4 when solving for a single steady state
and tightened to 1.0 × 10−6 when using a bifurcation tracking or stability analysis
algorithm. For steady-state solutions, the Krylov subspace was set to a maximum
of 400. The algorithm typically required between 30 and 150 GMRES iterations to
converge the linear system, depending on the Reynolds number. For the bifurcation
tracking algorithms, the Jacobian matrix was near singular and the Krylov subspace
was extended to a maximum of 800 iterations to achieve convergence. Three levels of
overlap were used.

The nonlinear iteration sequence was terminated when the criterion described in
equation (3.7) was met. When solving for the steady state, the following values
were used: C = 1.0, RT OL =1.0 × 10−5, AT OL =1.0 × 10−8, and κ = 1.0. The RTOL
value was relaxed to 1.0 × 10−2 for the null vector component during the bifurcation
tracking runs due to the difficulty in resolving the null vectors in equations (3.11)
and (3.12). This change did not have a significant impact on the results. For example,
at α = 0.125 the value of the Reynolds number at the pitchfork bifurcation point
changed only in the fourth digit of accuracy when the tolerance was dropped from
1.0 × 10−5 to 1.0 × 10−2.

A study of the mesh dependence was performed to determine the accuracy at an
aspect ratio of 0.125. Table 1 shows the results for the critical Re obtained on four
meshes: an initial coarse mesh and three meshes at increasing levels of refinement.
Each level of refinement represents a bisection of each edge in the mesh so that
each two-dimensional quadrilateral element becomes four elements at the next level
of refinement. The predicted value for the pitchfork bifurcation using the initial
(more coarse) mesh differs by only 2.5 % from the value predicted using the highest
resolution; thus we consider the initial resolution to be adequate.
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Liñán, A. 1974 The asymptotic structure of counterflow diffusion flames for large activation energies.
Acta Astronautica 1, 1007–1039.

Maschhoff, K. J. & Sorensen, D. C. 1996 P ARPACK: An efficient portable large scale eigenvalue
package for distributed memory parallel architectures. In Applied Parallel Computing in
Industrial Problems and Optimization (ed. J. Wasniewski, J. Dongarra, K. Madsen &
D. Oleson). Lecture Notes in Computer Science, vol. 1184. Springer.

Meerbergen, K. & Roose, D. 1997 The restarted Arnoldi method applied to iterative linear system
solvers for the computation of rightmost eigenvalues. SIAM J. Matrix Anal. Appl. 18, 1–20.

Meerbergen, K., Spence, A. & Roose, D. 1994 Shift-invert and Cayley transforms for the detection
of rightmost eigenvalues of nonsymmetric matricies. BIT 34, 409–423.

Pawlowski, R. P. 2000 Numerical studies of complex reacting flows. PhD thesis, State University
of New York at Buffalo.



Stability of counterflowing jets 139

Puri, I. K., Seshadri, K., Smooke, M. D. & Keyes, D. E. 1987 A comparison between numerical
calculations and experimental measurements of the structure of a counterflow methane-air
diffusion flame. Combust. Sci. Tech. 56, 1–22.

Rolon, J. C., Veynante, D. & Martin, J. P. 1991 Counterjet stagnation flows. Exps. Fluids 11,
313–324.

Ruhe, A. 1996 Computing nonlinear eigenvalues with spectral transformation Arnoldi. ZAMM Z.
Angew. Math. Mech. 76 (S2), 17–20.

Saad, Y. 1996 Iterative Methods for Sparse Linear Systems . Boston, MA: PWS.

Saad, Y. & Schultz, M. H. 1986 GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869.

Safvi, S. A. 1995 Studies of thermal decomposition reactions in a counterflow jet reactor and
growth of gallium arsenide films by metalorganic chemical vapor deposition. PhD thesis,
State University of New York at Buffalo.

Safvi, S. A. & Mountziaris, T. J. 1993 Gas-phase decomposition kinetics of MOVPE precursors
in a counterflow jet reactor. In Chemical Perspectives of Microelectronic Materials III , Mater.
Res. Soc. Symp. Proc., vol. 282, pp. 157–162. Materials Research Society.

Safvi, S. A. & Mountziaris, T. J. 1994 A new reactor for purely homogeneous kinetic studies of
endothermic reactions. AIChE J. 40, 1535–1548.

Salinger, A. G., Bou-Rabee, N. M., Pawlowski, R. P., Wilkes, E. D., Burroughs, E. A., Lehoucq,

R. B. & Romero, L. A. 2002a LOCA 1.0 A library of continuation algorithms: Theroy
and implementation manual. Tech. Rep. SAND2002-0396. Sandia National Laboratories,
Albuquerque.

Salinger, A. G., Burroughs, E. A., Pawlowski, R. P., Phipps, E. T. & Romero, L. A. 2005
Bifurcation tracking algorithms and software for large scale applications. Intl J. Bifurcat.
Chaos 15, 1015–1032.

Salinger, A. G., Devine, K. D., Hennigan, G. L., Moffat, H. K., Hutchinson, S. A. & Shadid,

J. N. 1996 MPSalsa: A finite element computer program for reacting flow problems – part II
user’s guide. Tech. Rep. SAND96-2331. Sandia National Laboratories, Albuquerque.

Salinger, A. G., Lehoucq, R. B., Pawlowski, R. P. & Shadid, J. N. 2002b Computational
bifurcation and stability studies of the 8:1 thermal cavity problem. Intl J. Numer. Meth. Fluids
20, 1059–1073.

Salinger, A. G., Lehoucq, R. B. & Romero, L. 2001 Stability analysis of large-scale incompressible
flow calculations on massively parallel computers. Comput. Fluid Dyn. J. 9, 529–534.

Sarigiannis, D., Peck, J., Kioseoglou, G., Petrou, A. & Mountziaris, T. J. 2002 Characterization
of vapor-phase-grown ZnSe nanoparticles. Appl. Phys. Lett. 80, 4024–4026.

Shadid, J. N. 1999 A fully-coupled Newton-Krylov solution method for parallel unstructured finite
element fluid flow, heat and mass transfer simulations. Intl J. Comput. Fluid Dyna. 12, 199.

Shadid, J. N., Moffatt, H. K., Hutchinson, S. A., Hennigan, G. L., Devine, K. D. & Salinger,

A. G. 1996 MPSalsa: A finite element computer program for reacting flow problems –
Part I theoretical development. Tech. Rep. SAND95-2752. Sandia National Laboratories,
Albuquerque.

Shadid, J. N., Tuminaro, R. S. & Walker, H. F. 1997 An inexact Newton method for fully-coupled
solution of the Navier–Stokes equations with heat and mass transport. J. Comput. Phys. 137,
155–185.

Tamir, A. 1994 Impinging Stream Reactors, Fundamentals and Applications . Transport Processes in
Engineering 7. Elsevier.

Tezduyar, T. E. 1992 Stabilized finite element formulations for incompressible flow computations.
Adv. Appl. Mech. 28, 1.

Vlachos, D. G., Schmidt, L. D. & Aris, R. 1993 Ignition and extinction of flames near surfaces:
Combustion of H2 in air. Combust. Flame 95, 313–335.

Wood, P., Hrymak, A., Yeo, R., Johnson, D. & Tyagi, A. 1991 Experimental and computational
studies of the fluid mechanics in an opposed jet mixing head. Phys. Fluids A 3, 1362–1368.

Zachariah, M. R. & Semerjian, H. G. 1989 Simulation of ceramic particle formation: comparison
with in-situ measurements. AIChE J. 35, 2003–2012.

Zhao, J. & Isaac, K. M. 1997 Influence of geometry and heat release on counterflow diffusion
flames: A Navier-Stokes model. Intl J. Comput. Fluid Mech. 8, 287–298.




